metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yu Wu,^{a,b} Shao-Min Shi,^a Bing Jia^a and Zong-Qiu Hu^a*

^aDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, and ^bDepartment of Chemistry, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, People's Republic of China

Correspondence e-mail: zqhu@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.012 \text{ Å}$ R factor = 0.052 wR factor = 0.157 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[3,5-Dibromosalicylaldehyde (2-hydroxybenzoyl)hydrazonato- $\kappa^{3}O,N,O'$]bis(pyridine- κN)zinc(II)

In the title compound, $[Zn(C_{14}H_8Br_2N_2O_3)(C_5H_5N)_2]$, the Zn^{II} ion is coordinated by one N and two O atoms from a Schiff base ligand and by the N atoms of two pyridine molecules to form a distorted trigonal-bipyramidal geometry.

Comment

Previously, we have reported the crystal structure and properties of a 3,5-dibromosalicylaldehyde salicylhydrazone zinc(II) complex (Hu *et al.*, 2005). We now report the synthesis and crystal structure of the title compound, (I).

The Zn^{II} ion is coordinated by one N and two O atoms from the 3,5-dibromosalicylaldehyde salicylhydrazone ligand, and

O 2006 International Union of Crystallography All rights reserved

Received 20 February 2006 Accepted 22 February 2006 by two N atoms of two pyridine molecules (Fig. 1). This ZnN₃O₂ coordination forms a distorted trigonal-bipyramidal geometry (Table 1). Intramolecular $O-H \cdots N$ and $C-H \cdots O$ hydrogen bonds are observed in the Schiff base ligand (Table 2).

Experimental

To an ethanol solution (100 ml) of salicylhydrazine (6 g), one molar equivalent of 3,5-dibromosalicylaldehyde in ethanol (50 ml) was added slowly with continuous stirring and 3,5-dibromosalicylaldehyde salicylhydrazone precipitated immediately. 3,5-Dibromosalicylaldehyde salicylhydrazone (1 mmol), Zn(OAc)₂ (1 mmol), dimethylformamide (30 ml) and pyridine (10 ml) were refluxed for 1 h. The hot solution was filtered and allowed to stand at room temperature for 21 d, whereupon green crystals of (I) were obtained.

Crystal data

$[Zn(C_{14}H_8Br_2N_2O_3)(C_5H_5N)_2]$	Z = 2
$M_r = 635.61$	$D_x = 1.712 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.9000 (11) Å	Cell parameters from 1568
b = 12.2172 (14) Å	reflections
c = 13.1342 (16) Å	$\theta = 2.5 - 21.0^{\circ}$
$\alpha = 101.696 \ (2)^{\circ}$	$\mu = 4.27 \text{ mm}^{-1}$
$\beta = 103.519 \ (2)^{\circ}$	T = 292 (2) K
$\gamma = 110.744 \ (2)^{\circ}$	Block, green
$V = 1232.9$ (3) $Å^3$	0.20 \times 0.20 \times 0.20 mm

Data collection

Bruker SMART CCD area-detector	2763 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.021$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}$
Absorption correction: none	$h = -10 \rightarrow 9$
6745 measured reflections	$k = -12 \rightarrow 15$
4740 independent reflections	$l = -15 \rightarrow 16$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.157$ S = 1.014740 reflections 308 parameters H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0716P)^2]$
+ 0.5653P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm A}^{-3}$
$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	1.976 (4)	Zn1-N4	2.074 (5)
Zn1-N1	2.032 (4)	Zn1-O2	2.077 (4)
Zn1-N3	2.057 (5)		
O1-Zn1-N1	89.04 (17)	N3-Zn1-N4	102.42 (17)
O1-Zn1-N3	96.67 (18)	O1-Zn1-O2	165.38 (15)
N1-Zn1-N3	123.88 (17)	N1-Zn1-O2	77.01 (17)
O1-Zn1-N4	94.43 (19)	N3-Zn1-O2	94.78 (18)
N1-Zn1-N4	132.84 (17)	N4-Zn1-O2	91.95 (19)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C24—H24···O1	0.93	2.53	3.073 (8)	118
C20−H20···O2	0.93	2.46	3.022 (8)	119
C19−H19· · ·O1	0.93	2.56	3.108 (8)	118
C15−H15···O2	0.93	2.55	3.110 (8)	119
C14−H14···O2	0.93	2.46	2.779 (8)	100
O3−H3···N2	0.82	1.87	2.582 (6)	145

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with O-H = 0.82 Å, C-H = 0.93 Å and $U_{iso}(H) =$ $1.2-1.5U_{eq}(C,O).$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by Hubei Education Government of China (grant No. 20040131).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hu, Z.-Q., Yu, W. & Jia, B. (2005). Chin. J. Inorg. Chem. 21, 1715-1718.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.